Lesson 9.2 Length of Line Segments

Use the symbol $|\ |$ to write the absolute values of the following numbers.

1. 7

2. -5

3. −18

4. 101

Find the perimeter of each polygon.

5. Figure *BCDE* is a trapezoid.

Perimeter

6. Figure *FGHJ* is a parallelogram.

Perimeter

7. Figure KLMN is a rhombus.

Perimeter

Plot each pair of points on the coordinate plane below. Connect the points to form a line segment and find its length.

Example -

- a) A (2, 0) and B (6, 0) By counting the number of units from 2 to 6, the length of \overline{AB} is $\underline{\hspace{1cm}}$ units.
- **b)** C(-3, 0) and D(-9, 0)By counting the number of units from -3 to -9, the length of \overline{CD} is _____ units.
- c) E(0, 3) and F(0, 5)

$$EF = |y\text{-coordinate of } \underline{F} | - |y\text{-coordinate of } \underline{E} |$$

$$= |\underline{5} | - |\underline{3} | = \underline{2} \text{ units}$$

The length of $\overline{\textit{EF}}$ is $\underline{}$ units.

To find the length of \overline{EF} , subtract EO from FO.

d) G(0, 2) and H(0, -2)

$$GH = |y\text{-coordinate of } \underline{G}| + |y\text{-coordinate of } \underline{H}|$$

$$= |\underline{2}| + |\underline{-2}| = \underline{4} \text{ units}$$

The length of \overline{GH} is $\underline{4}$ units.

To find the length of \overline{GH} , add GO and OH.

8. *M* (5, 0) and *N* (8, 0)

By counting the number of units from 5 to 8, the length of \overline{MN}

is _____ units.

9. P(-2, 0) and Q(-7, 0)

By counting the number of units from -2 to -7, the length of \overline{PQ}

is _____ units.

10. *R* (0, 5) and *S* (0, 9)

RS = |*y*-coordinate of _____| - |*y*-coordinate of _____|

The length of \overline{RS} is _____ units.

11. T(0, 3) and U(0, -6)

TU = |*y*-coordinate of _____| + |*y*-coordinate of _____|

= _____ units

The length of \overline{TU} is _____ units.

To find the length of \overline{AB} , subtract the distance of

point A from the y-axis from the distance of point B from the y-axis.

Plot each pair of points on the coordinate plane below. Connect the points to form a line segment and find its length.

Example -

a) A (1, 3) and B (4, 3)

AB = |x-coordinate of $\underline{\qquad} | - |x$ -coordinate of $\underline{\qquad} A$

The length of \overline{AB} is $\underline{}$ units.

b) C(-4, 1) and D(-4, 7)

CD = |y-coordinate of |y| - |y-coordinate of |y|

The length of \overline{CD} is _____6 units.

c) E(5, 4) and F(5, -4)

$$EF = |y$$
-coordinate of F $|+|y$ -coordinate of F

The length of \overline{EF} is $\underline{}$ units.

d) G(-3, -2) and H(4, -2)

$$GH = |x\text{-coordinate of} \underline{G}| + |x\text{-coordinate of} \underline{H}|$$

The length of \overline{GH} is $\underline{}$ units.

To find the length of \overline{GH} , add the distance of point G from the y-axis to the distance of point H from the y-axis.

12. J(-6, 2) and K(-1, 2)

JK = |x-coordinate of _____| - |x-coordinate of _____|

= |____| - |____|

= _____ units

The length of \overline{JK} is _____ units.

13. L (4, 2) and M (4, 8)

LM = |y-coordinate of _____| - |y-coordinate of _____|

= |____| - |____|

= _____ units

The length of \overline{LM} is _____ units.

14. *N* (1, 6) and *P* (1, −3)

NP = |y-coordinate of _____| + |y-coordinate of _____|

= _____ units

The length of \overline{NP} is _____ units.

15. Q(-6, -4) and R(5, -4)

QR = |x-coordinate of _____| + |x-coordinate of _____|

= _____ units

The length of \overline{QR} is _____ units.

In the diagram, rectangle *PQRS* represents a rectangular living room. The side length of each grid square is 2 feet. Use the diagram to answer questions a) to e).

- a) Give the coordinates of points P, Q, R, and S.
 The coordinates are P (2, 2), Q (28, 2), R (28, 18), and S (2, 18).
- **b)** Find the length and width of the living room in feet.

Length =
$$PQ$$

$$= 28 - 2$$

$$= 26 \text{ ft}$$

The length of the living room is ______ feet.

Width =
$$\frac{PS}{}$$
= $\frac{18}{}$ - $\frac{2}{}$
= $\frac{16}{}$ ft

The width of the living room is ____16___ feet.

c) Find the area of the living room in square feet.

Area =
$$\ell w$$

$$=$$
 416 ft²

The area of the living room is ______ square feet.

d) Find the perimeter of the living room in feet.

Perimeter =
$$2 \cdot (\ell + w)$$

The perimeter of the living room is <u>84</u> feet.

e) There is a standing lamp at point W in the living room at a distance of 22 feet from \overline{PS} and 2 feet from \overline{PQ} . Give the coordinates of point W and plot it on the coordinate plane.

1 grid square represents 2 feet.

22 ft =
$$22 \div 2$$

For point W to be in the living room, the x-coordinate has to be

 $\underline{}$ grid squares to the right of \overline{PS} .

So, point W is _____ grid squares to the right of the y-axis.

The x-coordinate of point W is $12 \times 2 = 24$

For point W to be in the living room, the y-coordinate has to be

 $\underline{\hspace{1cm}}$ grid square above \overline{PQ} .

1 + 1 = 2 grid squares

So, point W is $\underline{}$ grid squares above the x-axis.

The y-coordinate of point W is $2 \times 2 = 4$.

The coordinates of point W are (24 , 4).

In the diagram, rectangle *ABCD* represents a park. The side length of each grid square is 5 feet. Use the diagram to answer questions 16 to 20.

- **16.** Give the coordinates of points A, B, C, and D.
- 17. Find the length and width of the park in feet.

Length = _____

= _____ - ____

= _____ ft

The length of the park is _____ feet.

Width = _____

= _____ - ____

= _____ ft

The width of the park is _____ feet.

18. Find the area of the park in square feet.

Area = ℓw

= ____·___

= _____ ft²

The area of the park is _____ square feet.

19. Find the perimeter of the park in feet.

Perimeter = $2 \cdot (\ell + w)$

= 2 · _____

= _____ ft

The perimeter of the park is _____ feet.

20. There is a tree planted at point *E* in the park at a distance of 10 feet from \overline{AB} and 5 feet from \overline{AD} . Give the coordinates of point *E* and plot it on the coordinate plane.

1 grid square represents 5 feet.

= _____ grid squares

For point E to be in the park, the x-coordinate has to be _____ grid squares to the right of \overline{AB} .

_____ + ____ = ____ grid squares

So, point *E* is _____ grid squares to the right of the *y*-axis.

The x-coordinate of point E is _____ × ____ = ____.

For point E to be in the park, the y-coordinate has to be _____ grid square below \overline{AD} .

_____ = ____ grid squares

So, point E is _____ grid squares above the x-axis.

The y-coordinate of point *E* is _____ × ____ = ____.

The coordinates of point E are (______, _____).

In the diagram, trapezoid *JKLM* represents a stage. The side length of each grid square is 3 meters. Use the diagram to answer questions 21 to 25.

- **21.** Give the coordinates of points *J*, *K*, *L*, and *M*.
- **22.** Find the sum of the parallel sides, and the height of trapezoid *JKLM* in meters.

23. Find the area of the stage in square meters.

24. Jason measured the length of \overline{JK} and found it to be is 22.8 meters. Find the perimeter of the stage in meters.

25. A cross is marked at point N on the stage for an upcoming production. Point N is at a distance of 9 meters from \overline{JM} and 15 meters from \overline{ML} . Give the coordinates of point N and plot it on the coordinate plane.

- **11.** (-8, 1)
- **12.** (-6, -4)
- **13.** (3, 3)
- **14.** (6, -2)

- 15. triangle
- 16. parallelogram
- **17.** square
- 18. trapezoid
- 19. rectangle

- 20. rectangle
- 21. parallelogram
- 22. rhombus or parallelogram
- 23. trapezoid
- 24. triangle

Lesson 9.2

- **1.** |7| = 7
- **2.** |-5| = 5
- **3.** |-18| = 18
- **4.** |101| = 101
- 5. Perimeter

$$= 7 + 12 + 6 + 8$$

= 33 cm

6. Perimeter

$$= 13 + 9 + 13 + 9$$

- = 44 cm
- 7. Perimeter

$$= 7 + 7 + 7 + 7 + 7 = 28$$
 in.

8. 3

- 10. $RS = |y\text{-coordinate of } \underline{S}|$ - $|y\text{-coordinate of } \underline{R}|$
 - = <u>|9|</u> <u>|5|</u>

= <u>4</u> units

The length of $\overline{\it RS}$ is $\underline{4}$ units.

- 11. $TU = |y\text{-coordinate of }\underline{T}|$
 - + |y-coordinate of <u>U</u>|
 - = |3| + |-6|
 - = 9 units

The length of \overline{TU} is $\underline{9}$ units.

12. $JK = |x\text{-coordinate of }\underline{J}| - |x\text{-coordinate of }\underline{K}|$

$$= |-6| - |-1|$$

= 5 units

The length of \overline{JK} is $\underline{5}$ units.

13. $LM = |y\text{-coordinate of } \underline{M}| - |y\text{-coordinate of } \underline{L}|$ = $|\underline{8}| - |\underline{2}|$ = 6 units

The length of \overline{LM} is $\underline{6}$ units.

- **14.** NP = |y-coordinate of $\underline{N}| + |y$ -coordinate of $\underline{P}|$
 - $= |\underline{6}| + |\underline{-3}|$
 - = 9 units

The length of \overline{NP} is $\underline{9}$ units.

15. $QR = |x\text{-coordinate of } \underline{Q}| + |x\text{-coordinate of } \underline{R}|$ = $|\underline{-6}| + |\underline{5}|$ = 11 units

The length of \overline{QR} is $\underline{11}$ units.

- **16.** A (10, 55), B (10, 5), C (40, 5), D (40, 55)
- **17.** Length = AB= 55 - 5= 50 ft

The length of the park is 50 feet.

Width =
$$\underline{BC}$$

= $\underline{40} - \underline{10}$
= 30 ft

The width of the park is 30 feet.

18. Area = ℓw = $\underline{50} \cdot \underline{30}$ = 1,500 ft²

The area of the park is 1,500 square feet.

19. Perimeter = $2 \cdot (\ell + w)$ = $2 \cdot (\underline{50} + \underline{30})$ = $2 \cdot \underline{80}$ = $\underline{160}$ ft

The perimeter of the park is 160 feet.

For point E to be in the park, the x-coordinate has to be $\underline{2}$ grid squares to the right of \overline{AB} .

$$\underline{2} + \underline{2} = \underline{4}$$
 grid squares

So, point E is $\underline{4}$ grid squares to the right of the y-axis.

The x-coordinate of point E is $\underline{4} \times \underline{5} = \underline{20}$. For point E to be in the park, the y-coordinate has to be 1 grid square below \overline{AD} .

$$11 - 1 = 10$$
 grid squares

So, point *E* is $\underline{10}$ grid squares above the *x*-axis. The *y*-coordinate of point *E* is $\underline{10} \times \underline{5} = \underline{50}$. The coordinates of point *E* are (20, 50).

- **21.** J (15, 24), K (6, 3), L (36, 3), M (36, 24)
- **22.** Sum of the parallel sides = 51 meters Height of the trapezoid = 21 meters
- **23.** Area of the stage = 535.5 square meters
- **24.** 94.8 meters
- **25.** (21, 15)

Lesson 9.3

- 2. It is a straight line graph.
- 3. From the graph, Shannon's wage is \$28.
- **4.** From the graph, Shannon must work for $\underline{5}$ hours.

5.
$$w = 8 \cdot (\underline{5} + \underline{3})$$

= $8 \cdot \underline{8}$
= \$64

Shannon earns \$64.

- **6.** $h \ge 2.5$
- 7. \underline{w} is the dependent variable and \underline{h} is the independent variable.

8.	Time (t weeks)	0	1	2	3	4	5
	Rental Fees (c dollars)	4	6	<u>8</u>	<u>10</u>	<u>12</u>	14

Rental Fees of a Second-hand Bookstore

- **9.** 4 weeks
- **10.** \$22
- **11.** *t* < 3

Chapter 10

Lesson 10.1

1. rectangle

 \overline{WZ} is parallel to \overline{XY} .

 \overline{WX} is parallel to \overline{ZY} .

2. square

 \overline{MQ} is parallel to \overline{NP} .

 \overline{MN} is parallel to \overline{QP} .